Возможно, вам также понравится эта статья
Я захожу в McDonald’s, говорю молодой девушке за кассой: — Здравствуйте. Мне гамбургер [29 рублей], картошку фри [31 рубль] и «кока-колу» [34 рубля]. — Пирожок [38 рублей] не желаете? — Почему бы и нет, давайте. Эта статья про пирожок за 38 рублей, который может стать третью прибыли мировой компании. То есть про рекомендации. Статья была опубликована на Look At Me.
38 рублей моего заказа составляют 29% денег, которые я заплатил девушке за кассой, и если бы я был недоволен жизнью, я бы изобразил этот факт вот так:
Эффективная и выгодная реклама с сервисом от МегаФона
Широкий выбор рекламных каналов, более 100 параметров по интересам, подробная аналитика и другие возможности уже ждут в Личном кабинете. А еще кешбэк 100% за запуск рекламы в первый месяц и еще 10% — каждый месяц.
Я — компьютер
Я не знаю, сколько зарабатывает McDonald's на рекомендациях пирожков и картошки фри, но данные от электронных магазинов иногда просачиваются. Вот например, есть слух про amazon.com, у которого ссылка на рекомендации на одном уровне с логотипом.Чтобы порекомендовать вам что-то, компьютеры сначала исследуют ваш вкус. Есть много разных параметров, по которым можно отследить, какой у вас вкус:
- какие страницы вы смотрите чаще;
- какие товары покупаете;
- какие кладете себе в вишлист;
- как вы оцениваете те или иные вещи;
- что вы рекомендуете друзьям;
- что нравится вашим друзьям.
Человекоориентированные рекомендации
Классическим примером является сервис Last.fm. Он находит людей, которым нравятся песни, нравящиеся вам. Если этим людям нравится что-то, о чем вы еще не слышали, сервис рекомендует это вам. Это выглядит так:Будь я компьютером, посоветовал бы ABBA. Так компьютеры и делают.
Продуктоориентированные рекомендации
Ученые из Amazon.com (так круто, что в магазине работают ученые!) одними из первых решили, что компьютерам легче отталкиваться не от похожести людей, а от похожести вещей. И они начали искать не людей со схожими вкусами, а товары, которые похожи на те, что нравятся вам. Это выглядит так:Компьютер посоветует BMW и Apple. Ну, вы и так поняли. Может показаться, что эти способы почти ничем не отличаются. Но компьютеры — чувствительные штуки, и для них все очень важно.
Узнать вкус всех человеков!
И это не самое сложное. Сложнее всего понять, насколько совпадают вкусы людей или насколько похожи две вещи друг на друга. Однажды я уже рассказывал про трехмерное пространство, но когда имеешь дело со вкусами людей, в дело вступают пространства пострашнее. Например, у вас есть магазин и там продается около тысячи вещей. Тогда вам понадобится производить операции в тысячемерном пространстве, чтобы узнать вкусы ваших покупателей. Это не очень-то просто, потому что даже четырехмерное пространство — черт знает что. Давайте для простоты будем продавать только два товара, чтобы узнать, кто на кого похож — практичные сапоги Hunter и еще более практичные коричневые трусы American Apparel. Шкала вкуса такова — от 100 (полный восторг) до — 100 (полное отвращение). Допустим, Круглый полностью восторжен трусами, но лишь наполовину восторжен сапогами. Можно изобразить его вкус следующим образом:Про Яйцеголового нам известно меньше — трусы ему нравятся очков на 60. Как компьютеру посчитать, насколько ему понравятся сапоги?
Эта формула — обычная пропорция, которой всех учат в школе. Ничего сложного, но сложности начинаются, как только товаров больше двух. Сразу в дело вступают косинусы углов в n-мерном пространстве и другие штуки. Так что остановимся на двух товарах. Уверен, суть вы уловили.